Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources
نویسندگان
چکیده
Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO2. A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of Pkan or one of two native T. denitrificans promoters. The relative strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.
منابع مشابه
Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.
Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemoli...
متن کاملAssessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation
Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of...
متن کاملMesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant.
The bacterial strain SJT(T), along with 15 other mesophilic, neutrophilic and facultatively sulfur-oxidizing chemolithotrophic isolates, was isolated by enrichment on reduced sulfur compounds as the sole energy and electron source from soils immediately adjacent to the roots of Clitoria ternatea, a slender leguminous herb of the Lower Gangetic plains of India. Strain SJT(T) was able to oxidize ...
متن کاملEngineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones.
Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid ...
متن کاملDraft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus.
Acidithiobacillus caldus is an extremely acidophilic, moderately thermophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and reduced inorganic sulfur compounds. Here we present the draft genome sequence of Acidithiobacillus caldus ATCC 51756 (the type strain of the species), which has permitted the prediction of genes for survival in extremely a...
متن کامل